Source code for nets

import warnings

from training import NetBase
import torch.nn as nn

[docs] class ConvNetBase(NetBase): """Base Class for the Convolutional Networks proposed in the HASYv2 article. This defines a general forward method that is the same for all of them. """ def __init__(self, **kwargs): if "is_classifier" in kwargs: if not kwargs["is_classifier"]: warnings.warn('Keyword argument "is_classifier" ' 'overridden to True in ConvNetBase.') kwargs["is_classifier"] = True # override super(ConvNetBase, self).__init__(**kwargs) self.conv_net = None self.lin_net = None
[docs] def forward(self, inputs): batch_size = inputs.shape[0] conv_out = self.conv_net(inputs) lin_out = self.lin_net(conv_out.view(batch_size, -1)) return lin_out
[docs] class TwoLayer(ConvNetBase): """Two Layer Convolutional Neural Network""" def __init__(self, **kwargs): super(TwoLayer, self).__init__(**kwargs) self.conv_net = nn.Sequential( nn.Conv2d(1, 32, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)) ) self.lin_net = nn.Sequential( nn.Linear(32 * 15 * 15, 369), nn.Softmax(dim=1) )
[docs] class ThreeLayer(ConvNetBase): """Three Layer Convolutional Neural Network""" def __init__(self, **kwargs): super(ThreeLayer, self).__init__(**kwargs) self.conv_net = nn.Sequential( nn.Conv2d(1, 32, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)), nn.Conv2d(32, 64, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)), ) self.lin_net = nn.Sequential( nn.Linear(64 * 6 * 6, 369), nn.Softmax(dim=1) )
[docs] class FourLayer(ConvNetBase): """Four Layer Convolutional Neural Network""" def __init__(self, **kwargs): super(FourLayer, self).__init__(**kwargs) self.conv_net = nn.Sequential( nn.Conv2d(1, 32, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)), nn.Conv2d(32, 64, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)), nn.Conv2d(64, 128, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)), ) self.lin_net = nn.Sequential( nn.Linear(128 * 2 * 2, 369), nn.Softmax(dim=1) )
[docs] class TFCNN(ConvNetBase): """TF-CNN""" def __init__(self, **kwargs): super(TFCNN, self).__init__(**kwargs) self.conv_net = nn.Sequential( nn.Conv2d(1, 32, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)), nn.Conv2d(32, 64, (3, 3)), nn.MaxPool2d((2, 2), (2, 2)), ) self.lin_net = nn.Sequential( nn.Linear(64 * 6 * 6, 1024), nn.Tanh(), nn.Dropout(0.5), nn.Linear(1024, 369), nn.Softmax(dim=1) )